Ideas on Signal Generation for Evolutionary Testing of Continuous Systems
نویسنده
چکیده
Test case generation constitutes a critical activity in software testing that is cost-intensive, time-consuming and error-prone when done manually. Hence, an automation of this process is required. One automation approach is search-based testing for which the task of generating test data is transformed into an optimization problem which is solved using metaheuristic search techniques. However, only little work has so far been done to apply search-based testing techniques to systems that depend on continuous input signals rather than single discrete input values. This paper proposes three novel approaches to generating input signals from within search-based testing techniques for continuous systems.
منابع مشابه
Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملAutomated Continuous Testing of Multi-Agent Systems
Agent-based distributed systems are increasingly used in various application domains, where autonomy, proactivity and cooperation are required. Correspondingly, the demands on the quality of the delivered agents are growing. However, testing remains a challenging activity and systematic and automated approaches are still missing. We propose a novel framework for the continuous testing of multi-...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملAppraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories
Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...
متن کاملA Continuous Plane Model to Machine Layout Problems Considering Pick-Up and Drop-Off Points: An Evolutionary Algorithm
One of the well-known evolutionary algorithms inspired by biological evolution is genetic algorithm (GA) that is employed as a robust and global optimization tool to search for the best or near-optimal solution with the search space. In this paper, this algorithm is used to solve unequalsized machines (or intra-cell) layout problems considering pick-up and drop-off (input/output) points. Such p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008